Expression Profiling Identifies the Noncoding Processed Transcript of HNRNPU with Proliferative Properties in Pancreatic Ductal Adenocarcinoma

نویسندگان

  • Dhruvitkumar S. Sutaria
  • Jinmai Jiang
  • Ana Clara P. Azevedo-Pouly
  • Eun Joo Lee
  • Megan R. Lerner
  • Daniel J. Brackett
  • Jo Vandesompele
  • Pieter Mestdagh
  • Thomas D. Schmittgen
چکیده

A gene array was used to profile the expression of 22,875 long non-coding RNAs (lncRNAs) and a large number of protein coding genes in 47 specimens of pancreatic ductal adenocarcinoma (PDAC), adjacent benign pancreas and the pancreas from patients without pancreatic disease. Of the lncRNAs profiled, the expression of 126 were significantly increased and 260 were decreased in the tumors (p < 0.05, 2-fold). The expression of one lncRNA in particular, heterogeneous nuclear ribonucleoprotein U (HNRNPU) processed transcript (also known as ncRNA00201) was among the most significantly deregulated (increased four-fold) in the tumors compared to normal/adjacent benign tissues. Increased expression of HNRNPU processed transcript was associated with poor prognosis for patients with PDAC. The expression of HNRNPU processed transcript was increased in PDAC cell lines compared to noncancerous pancreatic cell lines. LNATM gapmer mediated inhibition of HNRNPU processed transcript reduced cell proliferation in Patu-T and PL45 pancreatic cancer cell lines. Reduced invasion and migration was reported upon HNRNPU processed transcript knockdown in Patu-T cells. Small interfering RNA (siRNA) knockdown of the HNRNPU protein coding gene correlated with a 55% reduction in the HNRNPU processed transcript expression and a corresponding reduction in proliferation of Patu-T and PL45 cells. However, gapmer inhibition of HNRNPU processed transcript did not affect HNRNPU mRNA levels. The lncRNA HNRNPU processed transcript expression is increased in both PDAC tissues and cell lines; knockdown of this lncRNA further reduces proliferation and invasion/migration of pancreatic carcinoma cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-Wide Analysis Identified a Number of Dysregulated Long Noncoding RNA (lncRNA) in Human Pancreatic Ductal Adenocarcinoma

BACKGROUND Long noncoding RNAs have been shown to play crucial roles in cancer biology, while the long noncoding RNA landscapes of pancreatic ductal adenocarcinoma have not been completely characterized. We aimed to determine whether long noncoding RNA could serve as early diagnostic biomarkers for pancreatic ductal adenocarcinoma. METHOD We conducted a genome-wide microarray analysis on panc...

متن کامل

Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells

Development of systems that reconstitute hallmark features of human pancreatic intraepithelial neoplasia (PanINs), the precursor to pancreatic ductal adenocarcinoma, could generate new strategies for early diagnosis and intervention. However, human cell-based PanIN models with defined mutations are unavailable. Here, we report that genetic modification of primary human pancreatic cells leads to...

متن کامل

Cell-free plasma microRNA in pancreatic ductal adenocarcinoma and disease controls.

OBJECTIVES There are no tumor-specific biochemical markers for pancreatic ductal adenocarcinoma (PDAC). Tissue-specific gene expression including microRNA (miRNA) profiling, however, identifies specific PDAC signatures. This study evaluates associations between circulating, cell-free plasma-miRNA profiles and PDAC in a disease and disease-control cohort. METHODS We performed a microarray prof...

متن کامل

Long noncoding RNA H19 derived miR-675 regulates cell proliferation by down-regulating E2F-1 in human pancreatic ductal adenocarcinoma

The long noncoding RNA (lncRNA) H19 has been proven to be overexpressed in human pancreatic ductal adenocarcinoma (PDAC). H19-induced PDAC cell proliferation is cell cycle-dependent by modulating E2F-1. However, the mechanism of how H19 regulates E2F-1 remains unclear. In this study, we investigated the expression of miR-675 in PDAC tumours and cells, the biological function of miR-675 in PDAC ...

متن کامل

MALAT-1 inhibited tumor cell growth via induction of G2/M cell cycle arrest and apoptosis, and decreased cell migration and invasion through regulation of epithelial-mesenchymal transition (EMT) and stem-like cell

Pancreatic cancer is one of the most aggressive solid malignancies with a dismal survival rate. Recent studies have shown that high expression levels of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript-1 (MALAT-1) correlate with several solid tumors. However, the underlying molecular mechanisms and its clinical significance in pancreatic cancer remain to be eluci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017